Iterative Methods for Neutron Transport Eigenvalue Problems
نویسندگان
چکیده
منابع مشابه
Iterative Methods for Neutron Transport Eigenvalue Problems
We discuss iterative methods for computing criticality in nuclear reactors. In general this requires the solution of a generalised eigenvalue problem for an unsymmetric integro-differential operator in 6 independent variables, modelling transport, scattering and fission, where the dependent variable is the neutron angular flux. In engineering practice this problem is often solved iteratively, u...
متن کاملMultilevel NDA Methods for Solving Multigroup Eigenvalue Neutron Transport Problems
The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in one-dimensional slab geometry. The proposed method is defined by a multilevel system of equations that includes multigroup and effective onegr...
متن کاملConvergence orders of iterative methods for nonlinear eigenvalue problems
The convergence analysis of iterative methods for nonlinear eigenvalue problems is in the most cases restricted either to algebraic simple eigenvalues or to polynomial eigenvalue problems. In this paper we consider two classical methods for general holomorphic eigenvalue problems, namely the nonlinear generalized Rayleigh quotient iteration (NGRQI) and the augmented Newton method. For both meth...
متن کاملIterative Projection Methods for Large–scale Nonlinear Eigenvalue Problems
In this presentation we review iterative projection methods for sparse nonlinear eigenvalue problems which have proven to be very efficient. Here the eigenvalue problem is projected to a subspace V of small dimension which yields approximate eigenpairs. If an error tolerance is not met then the search space V is expanded in an iterative way with the aim that some of the eigenvalues of the reduc...
متن کاملOn convergence of iterative projection methods for symmetric eigenvalue problems
We prove global convergence of particular iterative projection methods using the so-called shift-and-invert technique for solving symmetric generalized eigenvalue problems. In particular, we aim to provide a variant of the convergence theorem obtained by Crouzeix, Philippe, and Sadkane for the generalized Davidson method. Our result covers the Jacobi-Davidson and the rational Krylov methods wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2011
ISSN: 1064-8275,1095-7197
DOI: 10.1137/100799022